Gut Microbiota as an Epigenetic Regulator: Pilot Study Based on Whole-Genome Methylation Analysis
نویسندگان
چکیده
UNLABELLED The core human gut microbiota contributes to the developmental origin of diseases by modifying metabolic pathways. To evaluate the predominant microbiota as an epigenetic modifier, we classified 8 pregnant women into two groups based on their dominant microbiota, i.e., Bacteroidetes, Firmicutes, and Proteobacteria. Deep sequencing of DNA methylomes revealed a clear association between bacterial predominance and epigenetic profiles. The genes with differentially methylated promoters in the group in which Firmicutes was dominant were linked to risk of disease, predominantly to cardiovascular disease and specifically to lipid metabolism, obesity, and the inflammatory response. This is one of the first studies that highlights the association of the predominant bacterial phyla in the gut with methylation patterns. Further longitudinal and in-depth studies targeting individual microbial species or metabolites are recommended to give us a deeper insight into the molecular mechanism of such epigenetic modifications. IMPORTANCE Epigenetics encompasses genomic modifications that are due to environmental factors and do not affect the nucleotide sequence. The gut microbiota has an important role in human metabolism and could be a significant environmental factor affecting our epigenome. To investigate the association of gut microbiota with epigenetic changes, we assessed pregnant women and selected the participants based on their predominant gut microbiota for a study on their postpartum methylation profile. Intriguingly, we found that blood DNA methylation patterns were associated with gut microbiota profiles. The gut microbiota profiles, with either Firmicutes or Bacteroidetes as a dominant group, correlated with differential methylation status of gene promoters functionally associated with cardiovascular diseases. Furthermore, differential methylation of gene promoters linked to lipid metabolism and obesity was observed. For the first time, we report here a position of the predominant gut microbiota in epigenetic profiling, suggesting one potential mechanism in obesity with comorbidities, if proven in further in-depth studies.
منابع مشابه
Predicting CpG Islands and DNA Methlation in the Cow Genome Using DNA Microarray Meta-Analysis and Genome Wide Scanning
DNA methylation is a type of epigenetic changes that directly affects DNA. In mammals, DNA methylation is essential for fetal development and stem cell differentiation and this phenomenon essentially occurs within the CpG islands. In this study, two methods were used to study the DNA methylation profile of cow genome. In the first method, the DNA methylation profile of the differentially expres...
متن کاملPost-translational changes of histones, methylation level, and ERβ protein level in the cumulus cell genome of infertile women with endometriosis
Background: Endometriosis (which affects up to 50% of infertile women) is one of the major causes impacting female infertility. Endometriosis, defined as the presence of endometrial glands and stroma outside the uterine tissue, causes a wide range of functional disorders in the process of follicular development and changes in the follicular milieu, resulting in the formation of an incompetent o...
متن کاملاپیژنتیک سرطان پستان: مقاله مروری
Stable molecular changes during cell division without any change in the sequence of DNA molecules is known as epigenetic. Molecular mechanisms involved in this process, including histone modifications, methylation of DNA, protein complex and RNA antisense. Cancer genome changes happen through a combination of DNA hypermethylation, long-term epigenetic silencing with heterozygosis loss and genom...
متن کاملImportance of Gut Microbiota and Epigenetic Modifications in Maintaining Health or Diseases
Some organisms may modulate a healthy state or cause disorders by disruption or induction of several signaling pathways in human body. According to recent evaluations, numerous metabolic disorders such as diabetes, obesity, cardiovascular diseases, mental disorders, and cancers are as the result of bacterial interactions with the host. Various species of the bacteria, called commensal microbio...
متن کاملEGCG Prevents High Fat Diet-Induced Changes in Gut Microbiota, Decreases of DNA Strand Breaks, and Changes in Expression and DNA Methylation of Dnmt1 and MLH1 in C57BL/6J Male Mice
Obesity as a multifactorial disorder involves low-grade inflammation, increased reactive oxygen species incidence, gut microbiota aberrations, and epigenetic consequences. Thus, prevention and therapies with epigenetic active antioxidants, (-)-Epigallocatechin-3-gallate (EGCG), are of increasing interest. DNA damage, DNA methylation and gene expression of DNA methyltransferase 1, interleukin 6,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014